Build awareness and adoption for your software startup with Circuit.

Visualizing Attention in Vision Transformers

In 2022, the Vision Transformer (ViT) emerged as a viable competitor to convolutional neural networks (CNNs), which are now state-of-the-art in computer vision and widely employed in many image recognition applications. In terms of computational efficiency and accuracy, ViT models exceed the present state-of-the-art (CNN) by almost a factor of four.

Visualizing Settings, Image By Mary Amato

How does a Vision Transformer (ViT) work?

A vision transformer model’s performance is determined by decisions such as the optimizer, network depth, and dataset-specific hyperparameters. CNNs are more straightforward to optimize than ViT. The difference between a pure transformer and a CNN front end is to marry a transformer to a CNN front end. The standard ViT stem employs a 16*16 convolution with a 16 stride. In contrast, a 3*3 convolution with stride 2 improves stability and precision.

Source: Google Blog

CNN converts raw pixels into a feature map. A tokenizer then converts the feature map into a sequence of tokens, which are subsequently fed into the transformer. The transformer then uses the attention approach to generate a sequence of output tokens.

A projector eventually reconnects the output tokens to the feature map. The latter enables the investigation to navigate potentially important pixel-level details. As a result, the number of tokens that must be evaluated is reduced, cutting expenditures dramatically.

The overall architecture of the vision transformer model is given as follows in a step-by-step manner:

  1. Split an image into patches (fixed sizes)
  2. Flatten the image patches
  3. Create lower-dimensional linear embeddings from these flattened image patches
  4. Include positional embeddings
  5. Feed the sequence as an input to a state-of-the-art transformer encoder
  6. Pre-train the ViT model with image labels, which is then fully supervised on an extensive dataset
  7. Fine-tune the downstream dataset for image classification

Visualizing Attention in Vision Transformer

Step 1: Importing Libraries

import os
import torch
import numpy as np
import math
from functools import partial
import torch
import torch.nn as nn

import ipywidgets as widgets
import io
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
from torch import nn

import warnings
warnings.filterwarnings("ignore")

Step 2: Creating a Vision Transformer

def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.


def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    # work with diff dim tensors, not just 2D ConvNets
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + \
        torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C //
                                  self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x, attn


class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop)

    def forward(self, x, return_attention=False):
        y, attn = self.attn(self.norm1(x))
        if return_attention:
            return attn
        x = x + self.drop_path(y)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        num_patches = (img_size // patch_size) * (img_size // patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim,
                              kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class VisionTransformer(nn.Module):
    """
    Vision Transformer
    """

    def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim

        self.patch_embed = PatchEmbed(
            img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # Classifier head
        self.head = nn.Linear(
            embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def interpolate_pos_encoding(self, x, w, h):
        npatch = x.shape[1] - 1
        N = self.pos_embed.shape[1] - 1
        if npatch == N and w == h:
            return self.pos_embed
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        dim = x.shape[-1]
        w0 = w // self.patch_embed.patch_size
        h0 = h // self.patch_embed.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + 0.1, h0 + 0.1
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape(1, int(math.sqrt(N)), int(
                math.sqrt(N)), dim).permute(0, 3, 1, 2),
            scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
            mode=''bicubic'',
        )
        assert int(
            w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def prepare_tokens(self, x):
        B, nc, w, h = x.shape
        x = self.patch_embed(x)  # patch linear embedding

        # add the [CLS] token to the embed patch tokens
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add positional encoding to each token
        x = x + self.interpolate_pos_encoding(x, w, h)

        return self.pos_drop(x)

    def forward(self, x):
        x = self.prepare_tokens(x)
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)
        return x[:, 0]

    def get_last_selfattention(self, x):
        x = self.prepare_tokens(x)
        for i, blk in enumerate(self.blocks):
            if i < len(self.blocks) - 1:
                x = blk(x)
            else:
                # return attention of the last block
                return blk(x, return_attention=True)

    def get_intermediate_layers(self, x, n=1):
        x = self.prepare_tokens(x)
        # we return the output tokens from the `n` last blocks
        output = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if len(self.blocks) - i <= n:
                output.append(self.norm(x))
        return output


class VitGenerator(object):
    def __init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False):
        self.name_model = name_model
        self.patch_size = patch_size
        self.evaluate = evaluate
        self.device = device
        self.verbose = verbose
        self.model = self._getModel()
        self._initializeModel()
        if not random:
            self._loadPretrainedWeights()

    def _getModel(self):
        if self.verbose:
            print(
                f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}")
        if self.name_model == ''vit_tiny'':
            model = VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
                                      qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))

        elif self.name_model == ''vit_small'':
            model = VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
                                      qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))

        elif self.name_model == ''vit_base'':
            model = VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
                                      qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
        else:
            raise f"No model found with {self.name_model}"

        return model

    def _initializeModel(self):
        if self.evaluate:
            for p in self.model.parameters():
                p.requires_grad = False

            self.model.eval()

        self.model.to(self.device)

    def _loadPretrainedWeights(self):
        if self.verbose:
            print("[INFO] Loading weights")
        url = None
        if self.name_model == ''vit_small'' and self.patch_size == 16:
            url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"

        elif self.name_model == ''vit_small'' and self.patch_size == 8:
            url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"

        elif self.name_model == ''vit_base'' and self.patch_size == 16:
            url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"

        elif self.name_model == ''vit_base'' and self.patch_size == 8:
            url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"

        if url is None:
            print(
                f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used")

        else:
            state_dict = torch.hub.load_state_dict_from_url(
                url="https://dl.fbaipublicfiles.com/dino/" + url)
            self.model.load_state_dict(state_dict, strict=True)

    def get_last_selfattention(self, img):
        return self.model.get_last_selfattention(img.to(self.device))

    def __call__(self, x):
        return self.model(x)

Step 3: Creating Visualization Functions

def transform(img, img_size):
    img = transforms.Resize(img_size)(img)
    img = transforms.ToTensor()(img)
    return img


def visualize_predict(model, img, img_size, patch_size, device):
    img_pre = transform(img, img_size)
    attention = visualize_attention(model, img_pre, patch_size, device)
    plot_attention(img, attention)


def visualize_attention(model, img, patch_size, device):
    # make the image divisible by the patch size
    w, h = img.shape[1] - img.shape[1] % patch_size, img.shape[2] - \
        img.shape[2] % patch_size
    img = img[:, :w, :h].unsqueeze(0)

    w_featmap = img.shape[-2] // patch_size
    h_featmap = img.shape[-1] // patch_size

    attentions = model.get_last_selfattention(img.to(device))

    nh = attentions.shape[1]  # number of head

    # keep only the output patch attention
    attentions = attentions[0, :, 0, 1:].reshape(nh, -1)

    attentions = attentions.reshape(nh, w_featmap, h_featmap)
    attentions = nn.functional.interpolate(attentions.unsqueeze(
        0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()

    return attentions


def plot_attention(img, attention):
    n_heads = attention.shape[0]

    plt.figure(figsize=(10, 10))
    text = ["Original Image", "Head Mean"]
    for i, fig in enumerate([img, np.mean(attention, 0)]):
        plt.subplot(1, 2, i+1)
        plt.imshow(fig, cmap=''inferno'')
        plt.title(text[i])
    plt.show()

    plt.figure(figsize=(10, 10))
    for i in range(n_heads):
        plt.subplot(n_heads//3, 3, i+1)
        plt.imshow(attention[i], cmap=''inferno'')
        plt.title(f"Head n: {i+1}")
    plt.tight_layout()
    plt.show()



class Loader(object):
    def __init__(self):
        self.uploader = widgets.FileUpload(accept=''image/*'', multiple=False)
        self._start()

    def _start(self):
        display(self.uploader)

    def getLastImage(self):
        try:
            for uploaded_filename in self.uploader.value:
                uploaded_filename = uploaded_filename
            img = Image.open(io.BytesIO(
                bytes(self.uploader.value[uploaded_filename][''content''])))

            return img
        except:
            return None

    def saveImage(self, path):
        with open(path, ''wb'') as output_file:
            for uploaded_filename in self.uploader.value:
                content = self.uploader.value[uploaded_filename][''content'']
                output_file.write(content)

Step 4: Visualizing Images

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cuda":
    torch.cuda.set_device(1)

name_model = ''vit_small''
patch_size = 8

model = VitGenerator(name_model, patch_size,
                     device, evaluate=True, random=False, verbose=True)

! wget "https://github.com/aryan-jadon/Medium-Articles-Notebooks/raw/main/Visualizing%20Attention%20in%20Vision%20Transformer/corgi_image.jpg"
! wget "https://github.com/aryan-jadon/Medium-Articles-Notebooks/raw/main/Visualizing%20Attention%20in%20Vision%20Transformer/orange_cat.jpg"


# Visualizing Dog Image
path = ''/content/corgi_image.jpg''
img = Image.open(path)
factor_reduce = 2
img_size = tuple(np.array(img.size[::-1]) // factor_reduce)
visualize_predict(model, img, img_size, patch_size, device)

Visualizing Corgi, Source: PixaBay Visualizing Cat, Source: PixaBay

Code can be found here — https://github.com/aryan-jadon/Medium-Articles-Notebooks/tree/main/Visualizing%20Attention%20in%20Vision%20Transformer

Google Colab Link — https://colab.research.google.com/drive/1tRRuT21W3VUvORCFRazrVaFLSWYbYoqL?usp=sharing

References

  1. https://viso.ai/deep-learning/vision-transformer-vit/
  2. https://github.com/rwightman/pytorch-image-models
  3. https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html



Continue Learning