Run Your SQL Queries on Google Colab

Colab is a hosted Jupyter Notebook service that lets you run Python code on the cloud with access to GPUs and TPUs. While it’s mainly used for Python, Colab also lets you run SQL commands, making it easy to combine data manipulation and analysis into your work. Of the two main ways to use SQL in Colab, using magic commands is the simplest and most straightforward. To start with this, first we need to import the required libraries.

SQL on Google Colab

import pandas as pd
import sqlite3

Next, we take a Pandas dataframe input_df and upload it to table_name SQLITE table. We define SQL helper functions as follows.

def pd_to_sqlDB(input_df: pd.DataFrame,
                table_name: str,
                db_name: str = 'default.db') -> None:

    '''Take a Pandas dataframe `input_df` and upload it to `table_name` SQLITE table

    Args:
        input_df (pd.DataFrame): Dataframe containing data to upload to SQLITE
        table_name (str): Name of the SQLITE table to upload to
        db_name (str, optional): Name of the SQLITE Database in which the table is created.
                                 Defaults to 'default.db'.
    '''

    # Step 1: Setup local logging
    import logging
    logging.basicConfig(level=logging.INFO,
                        format='%(asctime)s %(levelname)s: %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S')

    # Step 2: Find columns in the dataframe
    cols = input_df.columns
    cols_string = ','.join(cols)
    val_wildcard_string = ','.join(['?'] * len(cols))

    # Step 3: Connect to a DB file if it exists, else crete a new file
    con = sqlite3.connect(db_name)
    cur = con.cursor()
    logging.info(f'SQL DB {db_name} created')

    # Step 4: Create Table
    sql_string = f"""CREATE TABLE {table_name} ({cols_string});"""
    cur.execute(sql_string)
    logging.info(f'SQL Table {table_name} created with {len(cols)} columns')

    # Step 5: Upload the dataframe
    rows_to_upload = input_df.to_dict(orient='split')['data']
    sql_string = f"""INSERT INTO {table_name} ({cols_string}) VALUES ({val_wildcard_string});"""
    cur.executemany(sql_string, rows_to_upload)
    logging.info(f'{len(rows_to_upload)} rows uploaded to {table_name}')

    # Step 6: Commit the changes and close the connection
    con.commit()
    con.close()


def sql_query_to_pd(sql_query_string: str, db_name: str ='default.db') -> pd.DataFrame:
    '''Execute an SQL query and return the results as a pandas dataframe

    Args:
        sql_query_string (str): SQL query string to execute
        db_name (str, optional): Name of the SQLITE Database to execute the query in.
                                 Defaults to 'default.db'.

    Returns:
        pd.DataFrame: Results of the SQL query in a pandas dataframe
    '''
    # Step 1: Connect to the SQL DB
    con = sqlite3.connect(db_name)

    # Step 2: Execute the SQL query
    cursor = con.execute(sql_query_string)

    # Step 3: Fetch the data and column names
    result_data = cursor.fetchall()
    cols = [description[0] for description in cursor.description]

    # Step 4: Close the connection
    con.close()

    # Step 5: Return as a dataframe
    return pd.DataFrame(result_data, columns=cols)

Finally, we can execute query using the code given below

def pd_to_sqlDB(input_df: pd.DataFrame,
                table_name: str,
                db_name: str = 'default.db') -> None:

    '''Take a Pandas dataframe `input_df` and upload it to `table_name` SQLITE table

    Args:
        input_df (pd.DataFrame): Dataframe containing data to upload to SQLITE
        table_name (str): Name of the SQLITE table to upload to
        db_name (str, optional): Name of the SQLITE Database in which the table is created.
                                 Defaults to 'default.db'.
    '''

    # Step 1: Setup local logging
    import logging
    logging.basicConfig(level=logging.INFO,
                        format='%(asctime)s %(levelname)s: %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S')

    # Step 2: Find columns in the dataframe
    cols = input_df.columns
    cols_string = ','.join(cols)
    val_wildcard_string = ','.join(['?'] * len(cols))

    # Step 3: Connect to a DB file if it exists, else crete a new file
    con = sqlite3.connect(db_name)
    cur = con.cursor()
    logging.info(f'SQL DB {db_name} created')

    # Step 4: Create Table
    sql_string = f"""CREATE TABLE {table_name} ({cols_string});"""
    cur.execute(sql_string)
    logging.info(f'SQL Table {table_name} created with {len(cols)} columns')

    # Step 5: Upload the dataframe
    rows_to_upload = input_df.to_dict(orient='split')['data']
    sql_string = f"""INSERT INTO {table_name} ({cols_string}) VALUES ({val_wildcard_string});"""
    cur.executemany(sql_string, rows_to_upload)
    logging.info(f'{len(rows_to_upload)} rows uploaded to {table_name}')

    # Step 6: Commit the changes and close the connection
    con.commit()
    con.close()


def sql_query_to_pd(sql_query_string: str, db_name: str ='default.db') -> pd.DataFrame:
    '''Execute an SQL query and return the results as a pandas dataframe

    Args:
        sql_query_string (str): SQL query string to execute
        db_name (str, optional): Name of the SQLITE Database to execute the query in.
                                 Defaults to 'default.db'.

    Returns:
        pd.DataFrame: Results of the SQL query in a pandas dataframe
    '''
    # Step 1: Connect to the SQL DB
    con = sqlite3.connect(db_name)

    # Step 2: Execute the SQL query
    cursor = con.execute(sql_query_string)

    # Step 3: Fetch the data and column names
    result_data = cursor.fetchall()
    cols = [description[0] for description in cursor.description]

    # Step 4: Close the connection
    con.close()

    # Step 5: Return as a dataframe
    return pd.DataFrame(result_data, columns=cols)

Advantages of using SQL in Google Colab:

  • Simplicity: The syntax is straightforward and easy to understand, making it accessible to beginners and experienced users alike.
  • Efficiency: Single-line queries can be executed swiftly, while multi-line queries can be organized into code blocks for better readability.
  • Integration with Python: SQL commands can be seamlessly interlaced with Python code, enabling a powerful combination of data analysis and programming.

Whether you’re a seasoned data scientist or a budding SQL enthusiast, use SQL within the versatile environment of Google Colab.

Full implemented code and used dataset is available at jyotidabass/SQL-on-google-colab (github.com)

Cheers!! Happy reading!! Keep learning!!

Enjoyed this article?

Share it with your network to help others discover it

Continue Learning

Discover more articles on similar topics