Notify: Just send the damn email. All with one API call.

Building Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person

Virtual try-on has developed into a game-changing tool that allows people to play with style without ever having to put on clothes in person. However, producing outcomes with great fidelity and consistency in details is a challenge for many of the current methods. Although diffusion models have proven to be capable of producing images that are both high-quality and lifelike, they still struggle to maintain control and consistency in conditional generation scenarios such as virtual try-ons.

For the given code, models are fixed and cannot be uploaded or modified; it only support users uploading their own garments. For a one-piece dress or coat, you only need to upload the image to the ‘top garment’ section and leave the ‘lower garment’ section empty. For building our own outfit anyone model, we need to create a gradio space and upload the files shown below. In models, garments and examples folders sample images needs to be added.

Files

The main code involved in this is as follows.

#app.py
import os
import cv2
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import asyncio

import requests
import base64
import gradio as gr
# from IPython import embed

machine_number = 0
model = os.path.join(os.path.dirname(__file__), "models/eva/Eva_0.png")

MODEL_MAP = {
    "AI Model Rouyan_0": ''models/rouyan_new/Rouyan_0.png'',
    "AI Model Rouyan_1": ''models/rouyan_new/Rouyan_1.png'',
    "AI Model Rouyan_2": ''models/rouyan_new/Rouyan_2.png'',
    "AI Model Eva_0": ''models/eva/Eva_0.png'',
    "AI Model Eva_1": ''models/eva/Eva_1.png'',
    "AI Model Simon_0": ''models/simon_online/Simon_0.png'',
    "AI Model Simon_1": ''models/simon_online/Simon_1.png'',
    "AI Model Xuanxuan_0": ''models/xiaoxuan_online/Xuanxuan_0.png'',
    "AI Model Xuanxuan_1": ''models/xiaoxuan_online/Xuanxuan_1.png'',
    "AI Model Xuanxuan_2": ''models/xiaoxuan_online/Xuanxuan_2.png'',
    "AI Model Yaqi_0": ''models/yaqi/Yaqi_0.png'',
    "AI Model Yaqi_1": ''models/yaqi/Yaqi_1.png'',
    "AI Model Yaqi_2": ''models/yaqi/Yaqi_2.png'',
    "AI Model Yaqi_3": ''models/yaqi/Yaqi_3.png'',
    "AI Model Yifeng_0": ''models/yifeng_online/Yifeng_0.png'',
    "AI Model Yifeng_1": ''models/yifeng_online/Yifeng_1.png'',
    "AI Model Yifeng_2": ''models/yifeng_online/Yifeng_2.png'',
    "AI Model Yifeng_3": ''models/yifeng_online/Yifeng_3.png'',
}

def add_waterprint(img):

    h, w, _ = img.shape
    img = cv2.putText(img, ''Powered by OutfitAnyone'', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)

    return img


def get_tryon_result(model_name, garment1, garment2, seed=1234):

    # model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0] # windows
    model_name = "AI Model " + model_name.split("/")[-1].split(".")[0] # linux
    print(model_name)

    encoded_garment1 = cv2.imencode(''.jpg'', garment1)[1].tobytes()
    encoded_garment1 = base64.b64encode(encoded_garment1).decode(''utf-8'')

    if garment2 is not None:
        encoded_garment2 = cv2.imencode(''.jpg'', garment2)[1].tobytes()
        encoded_garment2 = base64.b64encode(encoded_garment2).decode(''utf-8'')
    else:
        encoded_garment2 = ''

    url = os.environ[''OA_IP_ADDRESS'']
    headers = {''Content-Type'': ''application/json''}
    seed = random.randint(0, 1222222222)
    data = {
        "garment1": encoded_garment1,
        "garment2": encoded_garment2,
        "model_name": model_name,
        "seed": seed
    }
    response = requests.post(url, headers=headers, data=json.dumps(data))
    print("response code", response.status_code)
    if response.status_code == 200:
        result = response.json()
        result = base64.b64decode(result[''images''][0])
        result_np = np.frombuffer(result, np.uint8)
        result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
    else:
        print(''server error!'')

    
    final_img = add_waterprint(result_img)

    return final_img



with gr.Blocks(css = ".output-image, .input-image, .image-preview {height: 400px !important} ") as demo:
    # gr.Markdown("# Outfit Anyone v0.9")
    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <a href="https://github.com/HumanAIGC/OutfitAnyone" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
        </a>
        <div>
            <h1 >Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person</h1>
            <h4 >v0.9</h4>
            <h5 style="margin: 0;">If you like our project, please give us a star  on Github to stay updated with the latest developments.</h5>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;>
                <a href="https://github.com/HumanAIGC/OutfitAnyone"><img src="https://img.shields.io/badge/Arxiv-0000.00000-red"></a>
                <a href=''https://humanaigc.github.io/outfit-anyone/''><img src=''https://img.shields.io/badge/Project_Page-OutfitAnyone-green'' alt=''Project Page''></a>
                <a href=''https://github.com/HumanAIGC/OutfitAnyone''><img src=''https://img.shields.io/badge/Github-Repo-blue''></a>
            </div>
        </div>
        </div>
        """)
    with gr.Row():
        with gr.Column():
            init_image = gr.Image(sources=''clipboard'', type="filepath", label="model", value=model)
            example = gr.Examples(inputs=init_image,
                                  examples_per_page=4,
                                  examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Rouyan_0'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Rouyan_2'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Eva_0'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Simon_1'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Eva_1'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Simon_0'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Xuanxuan_0'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Xuanxuan_2'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Yaqi_1'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Yifeng_0'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Yifeng_3'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Rouyan_1'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Yifeng_2'')),
                                            os.path.join(os.path.dirname(__file__), MODEL_MAP.get(''AI Model Yaqi_0'')),
                                            ])
        with gr.Column():
            gr.HTML(
                """
                <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
                    <h3>Models are fixed and cannot be uploaded or modified; we only support users uploading their own garments.</h3>
                    <h4 style="margin: 0;">For a one-piece dress or coat, you only need to upload the image to the ''top garment'' section and leave the ''lower garment'' section empty.</h4>
                </div>
                </div>
                """)
            with gr.Row():
                garment_top = gr.Image(sources=''upload'', type="numpy", label="top garment")
                example_top = gr.Examples(inputs=garment_top,
                                          examples_per_page=5,
                                          examples=[os.path.join(os.path.dirname(__file__), "garments/top222.JPG"),
                                                    os.path.join(os.path.dirname(__file__), "garments/top5.png"),
                                                    os.path.join(os.path.dirname(__file__), "garments/top333.png"),
                                                    os.path.join(os.path.dirname(__file__), "garments/dress1.png"),
                                                    os.path.join(os.path.dirname(__file__), "garments/dress2.png"),
                                                            ])
                garment_down = gr.Image(sources=''upload'', type="numpy", label="lower garment")
                example_down = gr.Examples(inputs=garment_down,
                                           examples_per_page=5,
                                           examples=[os.path.join(os.path.dirname(__file__), "garments/bottom1.png"),
                                                     os.path.join(os.path.dirname(__file__), "garments/bottom2.PNG"),
                                                     os.path.join(os.path.dirname(__file__), "garments/bottom3.JPG"),
                                                     os.path.join(os.path.dirname(__file__), "garments/bottom4.PNG"),
                                                     os.path.join(os.path.dirname(__file__), "garments/bottom5.png"),
                                                            ])

            run_button = gr.Button(value="Run")
        with gr.Column():
            gallery = gr.Image()

            run_button.click(fn=get_tryon_result, 
                             inputs=[
                                    init_image,
                                    garment_top,
                                    garment_down,
                                    ], 
                             outputs=[gallery],
                             concurrency_limit=2)

    # Examples
    gr.Markdown("## Examples")
    with gr.Row():
        reference_image1  = gr.Image(label="model", scale=1, value="examples/basemodel.png")
        reference_image2  = gr.Image(label="garment", scale=1, value="examples/garment1.jpg")
        reference_image3  = gr.Image(label="result", scale=1, value="examples/result1.png")
    gr.Examples(
        examples=[
            ["examples/basemodel.png", "examples/garment1.png", "examples/result1.png"],
            ["examples/basemodel.png", "examples/garment2.png", "examples/result2.png"],
            ["examples/basemodel.png", "examples/garment3.png", "examples/result3.png"],
        ],
        inputs=[reference_image1, reference_image2, reference_image3],
        label=None,
    )

if __name__ == "__main__":
    ip = requests.get(''http://ifconfig.me/ip'', timeout=1).text.strip()
    print("ip address alibaba", ip)
    demo.queue(max_size=10)
    demo.launch()

After uploading these files, you can try with any cloth on model for a better shopping experience.

Results

The complete files and app is available at OutfitAnyone — a Hugging Face Space by HumanAIGC.

Notify: Just send the damn email. All with one API call.

Continue Learning

Discover more articles on similar topics

Combine Playwright with Scrapy for Web Scraping

Use the speed of Scrapy paired with the automation functions of Playwright

ScrapyWeb scrapingPython

What are the latest technology trends in the Gaming industry?

If you're interested in what your games might be capable of in the coming years, take a look at our list of technological innovations in gaming.

GamingTechnology

Amplify your Data mining workflow using Puppeteer and Bright data Scraping Browser

To extract meaningful information from large datasets you need tools, tools are essential for web scraping as they provide the necessary functionality to automate the process efficiently. In addition, they also help with data parsing, proxy rotation, rate limiting, data storage, error handling, and more. Some popular ones include Scrapy, Selenium, and Puppeteer, among others. It is without a doubt web scraping tools make the process more manageable and efficient. With a handful of solutions out there you can choose from.

datadataminingnodejs

Deploy an Application on AWS Serverless Services

Deploy an Application on AWS Serverless Services like AWS Lambda function, API Gateway, and DynamoDB

awsdevopsserverless

How to write one million small objects to S3

Learn how to efficiently store one million small objects to S3 for your stock analytics app with AWS Athena integration. Explore options like writing each object individually, grouping them into JSON or Parquet files, or utilizing Kinesis Firehose.

awscloudamazon athena

Multi-module Logging in Python

Enhance your Python logging capabilities with multi-module logging techniques. Learn how to efficiently manage and consolidate logs across various modules in your Python applications. Explore best practices and implementation strategies to streamline logging across your projects for improved debugging and monitoring.

pythonpython programmingpython3