JavaScript Data Structure Interview Questions (and Answers)

Published on

image

If you have been in any interview process, then you know that during a technical interview process data structure questions must be asked. Actually, it's a very common and most important topic for any interview process. With DS questions an interviewer can judge a candidate's capability. In this article, I put together some basic DS questions asked for a JavaScript interview.

Array

1. Remove all even integers from an array

Input: [4, 1, 9, 10, 15, 22, 5, 14]

Output: [4, 10, 22, 14]

This problem has multiple solutions, It totally depends on a candidate. Here, I provide two solutions with an explanation.

Solution — 1

const inputData = [4, 1, 9, 10, 15, 22, 5, 14]
removeEvenNumbers (inputData) => {
    let odds = []
    for (let number of inputData) {
        if (number % 2 != 0) odds.push(number)
    }
  return odds
}

console.log(removeEvenNumbers(inputData)))
// [4, 10, 22, 14]

In the above solution, we iterate through each element and check if it's even or odd. If it's odd then we push that into a separate array. So the time complexity of this problem is O(n)O(n).

Solution — 2

removeEvenNumbers(inputData) => {
    return inputData.filter((number => (number % 2) != 0))
}
console.log(removeEvenNumbers(inputData))

This solution also iterates through all the elements and checks if it is even. If it is even, it filters out that element. I used filter to filter out array data, It just filters out data that returns a false value. It has the same time complexity.

2. Find all repeated numbers from an array

Input: [1,2,4,5,6,1,3,7,9,10]

Output: [1, 2, 4, 5, 6, 3, 7, 9, 10]

const findUniqueNos = (inputData) => {
  let uniqueNumbers = []
  inputData.map(number => {
   let counts = uniqueNumbers.filter(uniqueNo => uniqueNo == number)
   if(counts.length != 1) uniqueNumbers.push(number)
  })
  return uniqueNumbers
}
console.log(findUniqueNos(inputData))

Simple? Yes, You need to loop through an array, and before that, you need to create one empty array and keep pushing a unique number into it. Just use filtering to identify if a number is already there or not.

Stack

1. Validate balanced parentheses

Write a function which takes only parentheses (curly {}, square [], or round ()). It should check that all parentheses in provided string is balanced or not. Simply it should check if there's an opening parentheses then it should have closing parentheses.

First input: {[({})]}

First output: true

Second input: {[({})}

Second output: false

class Stack {
    constructor() {
        this.items = []
        this.top = null
    }

getTop() {
        if (this.items.length == 0)
            return null
        return this.top
    }

    isEmpty() {
        return this.items.length == 0
    }

    size() {
        return this.items.length
    }

    push(element) {
        this.items.push(element)
        this.top = element
    }

    pop() {
        if (this.items.length != 0) {
            if (this.items.length == 1) {
                this.top = null
                return this.items.pop()
            } else {
                this.top = this.items[this.items.length - 2]
                return this.items.pop()
            }

    } else
            return null
    }
}

isBalancedParantheses(exp) => {
    let myStack = new Stack()

    // Loop through input string
    for (let i = 0 i < exp.length i++) {
        // Check for every closing parantheses if there's opeaning  parantheses or not.
        if (exp[i] == '}' || exp[i] == ')' || exp[i] == ']') {

            if (myStack.isEmpty()) return false
            let output = myStack.pop()

            //If no opening parentheses for any closing one then immediatly return false

        if (((exp[i] == "}") && (output != "{")) || ((exp[i] == ")") && (output != "(")) || ((exp[i] == "]") && (output != "["))) {
                return false
            }

        } else {
            //For each opening parentheses, push it into stack
            myStack.push(exp[i])
        }

}

//after traversal of input data, if there's any opening parentheses left in stack then also return false else return true at the end

if (myStack.isEmpty() == false) {
        return false
    }

return true
}

let firstInputData = "{[({})]}"
console.log(isBalancedParantheses(firstInputData))

secondInputData = "{[({})}"
console.log(isBalancedParantheses(secondInputData))

So at the beginning we loop through string and check character by character. There are two ways to identify unbalanced parentheses. First by stack value, second by top element of the stack. For that we need to check if stack is empty? OR Is top element on the stack is the right match? Any of these two condition gets true we immediately return false Opening paranthesis pushed into the stack, and if we got match then it will be popped. So you might wonder what's the time complexity of these code, since we iterate through only one time it's complexity will be O(n).

2. Write a function for converting numbers to base 2 and base 8

In this program you should write one function that will take integer value and one base value and then convert accordingly. Like for example, if an input is num = 14 and base = 2 then the result is 1110, num = 14, and base = 8 then the result is 16

Stack() => {
   constructor() {
        this.items = []
        this.top = 0
    }

   push (element) => {
      this.items[this.top++] = element
   }

   pop () => {
      return this.items[--this.top]
   }

   length () => {
      return this.top
   }
}

convertBase(num, base) => {
   let s = new Stack()
   while( num > 0 ){
      s.push(num % base)
      num = Math.floor(num /= base)
   }
   let converted = ""
   while (s.length() > 0) {
      converted += s.pop()
   }
   return converted
}

let num = 14
let base = 2
console.log(convertBase(num, base))

In this program basically we push number into the stack after conversion and then pop one by one digit of a number and then return a whole number.

Queue

1. Print binary number up to N, where N can be any positive integer

In this problem, we need to write a program which will take integer number and generate binary numbers till the limit. Like is input number n = 3 then the result should be [1,10,11]

module.exports = class Queue {

    constructor() {
        this.items = []
        this.front = null
        this.back = null
    }

    isEmpty() {
        return this.items.length == 0
    }

    getFront() {
        if (this.items.length != 0) {
            return this.items[0]
        } else
            return null
    }

    size() {
        return this.items.length
    }

    enqueue(element) {
        this.items.push(element)
    }

    dequeue() {
        if (this.items.length == 0) {
            return null
        } else {
            return this.items.shift()
        }
    }
}

generateBinaryNumbers(n) => {
    let result = []
    let myQueue = new Queue()
    let s1, s2
    myQueue.enqueue("1")
    for (let i = 0 i < n i++) {
        result.push(myQueue.dequeue())
        s1 = result[i] + "0"
        s2 = result[i] + "1"
        myQueue.enqueue(s1)
        myQueue.enqueue(s2)
    }
    return result
}

console.log(generateBinaryNumbers(3))

For generating binary number, we need to append 0 and 1 to previous binary number, like from 1 we can generate 10 and 11 by appending 0 and 1. Once you generate a binary number then enqueue to a queue for generating next number by appending 0 and 1. The time complexity of given solution is in O(n)O(n) because same operation running n times.

2. Explain how the priority queue system works.

In this program first you need to create a queue and then implement priority queue. Let me explain with an example.

Patient(name, code) => {
  this.name = name
  this.code = code
}

Queue() => {
    this.dataStore = []

    enqueue(element) => {
     this.dataStore.push(element)
    }
    dequeue() => {
       let priority = this.dataStore[0].code
       for (let i = 1; i < this.dataStore.length; ++i) {
         if (this.dataStore[i].code < priority) {
             priority = i
         }
       }
       return this.dataStore.splice(priority,1)
    }
     front() => {
     return this.dataStore[0]
    }
     back() => {
     return this.dataStore[this.dataStore.length-1]
    }
    toString() => {
        let retStr = ""
        for (let i = 0; i < this.dataStore.length; ++i) {
           retStr += this.dataStore[i].name + " code: " + this.dataStore[i].code + "\n"
        }
        return retStr
    }
     empty() => {
     if (this.dataStore.length == 0) {
        return true
     }
     else {
        return false
     }

}

let p = new Patient("Smith",5)
let ed = new Queue()
ed.enqueue(p)
p = new Patient("Jones", 4)
ed.enqueue(p)
p = new Patient("Fehrenbach", 6)
ed.enqueue(p)
p = new Patient("Brown", 1)
ed.enqueue(p)
p = new Patient("Ingram", 1)
ed.enqueue(p)

console.log(ed.toString())
let seen = ed.dequeue()
console.log("Patient being treated: " + seen[0].name)
console.log("Patients waiting to be seen: ")
console.log(ed.toString())

// another round
let seen = ed.dequeue()
console.log("Patient being treated: " + seen[0].name)
console.log("Patients waiting to be seen: ")
console.log(ed.toString())
let seen = ed.dequeue()
console.log("Patient being treated: " + seen[0].name)
console.log("Patients waiting to be seen: ")
console.log(ed.toString())

Generated output is like below:

Smith code: 5
Jones code: 4
Fehrenbach code: 6
Brown code: 1
Ingram code: 1

Patient being treated: Jones
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6
Brown code: 1
Ingram code: 1

Patient being treated: Ingram
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6
Brown code: 1

Patient being treated: Brown
Patients waiting to be seen:
Smith code: 5
Fehrenbach code: 6

As name suggest priority queue is used when you want to remove something from a queue based on priority. So, here I take an example of patient and it's visiting number. Basically it represent waiting room of any hospital. Here dequeue() function will remove the patient from the queue based on lowest priority after that toString() modifies the handled patient object.

Linked List

1. Write a program to reverse a linked list

Input: A linked list like this LinkedList = 0->1->2->3-4

Output: A reverse linked list LinkedList = 4->3->2->1->0

class Node {
  constructor(data) {
    this.data = data
    this.nextElement = null
  }
}

class LinkedList {
  constructor() {
    this.head = null
  }

//Insertion At Head
  insertAtHead(newData) {
    let tempNode = new Node(newData)
    tempNode.nextElement = this.head
    this.head = tempNode
    return this //returning the updated list
  }

isEmpty() {
    return (this.head == null)
  }

to print the linked lis=> t
  printList() {
    if (this.isEmpty()) {
      console.log("Empty List")
      return false
    } else {
      let temp = this.head
      while (temp != null) {
        process.stdout.write(String(temp.data))
        process.stdout.write(" -> ")
        temp = temp.nextElement
      }
      console.log("null")
      return true
    }
  }

getHead() {
    return this.head
  }
  setHead(newHead) {
    this.head = newHead
    return this
  }
  getListStr() {
    if (this.isEmpty()) {
      console.log("Empty List")
      return "null"
    } else {
      let st = ""
      let temp = this.head
      while (temp != null) {
        st += String(temp.data)
        st += " -> "
        temp = temp.nextElement
      }
      st += "null"
      return st
    }
  }
  insertAtTail(newData) {
    //Creating a new Node with data as newData
    let node = new Node(newData)

//check for case when list is empty
    if (this.isEmpty()) {
      //Needs to Insert the new node at Head
      this.head = node
      return this
    }

//Start from head
    let currentNode = this.head

//Iterate to the last element
    while (currentNode.nextElement != null) {
      currentNode = currentNode.nextElement
    }

//Make new node the nextElement of last node of list
    currentNode.nextElement = node
    return this
  }
  search(value) {
    //Start from the first element
    let currentNode = this.head

//Traverse the list until you find the value or reach the end
    while (currentNode != null) {
      if (currentNode.data == value) {
        return true //value found
      }
      currentNode = currentNode.nextElement
    }
    return false //value not found
  }
  deleteAtHead() {
    //if list is empty, do nothing
    if (this.isEmpty()) {
      return this
    }
    //Get the head and first element of the list
    let firstElement = this.head

//If list is not empty, link head to the nextElement of firstElement
    this.head = firstElement.nextElement

return this
  }
  deleteVal(value) {
    let deleted = null //True or False
    //Write code here

//if list is empty return false
    if (this.isEmpty()) {
      return false
    }

//else get pointer to head
    let currentNode = this.head
    // if first node's is the node to be deleted, delete it and return true
    if (currentNode.data == value) {
      this.head = currentNode.nextElement
      return true
    }

// else traverse the list
    while (currentNode.nextElement != null) {
      // if a node whose next node has the value as data, is found, delete it from the list and return true
      if (currentNode.nextElement.data == value) {
        currentNode.nextElement = currentNode.nextElement.nextElement
        return true
      }
      currentNode = currentNode.nextElement
    }
    //else node was not found, return false
    deleted = false
    return deleted
  }
  deleteAtTail() {
    // check for the case when linked list is empty
    if (this.isEmpty()) {
      return this
    }
    //if linked list is not empty, get the pointer to first node
    let firstNode = this.head
    //check for the corner case when linked list has only one element
    if (firstNode.nextElement == null) {
      this.deleteAtHead()
      return this
    }
    //otherwise traverse to reach second last node
    while (firstNode.nextElement.nextElement != null) {
      firstNode = firstNode.nextElement
    }
    //since you have reached second last node, just update its nextElement pointer to point at null, skipping the last node
    firstNode.nextElement = null
    return this
  }
}

/Access HeadNode => list.getHead()
//Set the value of HeadNode => list.getHead()
//Check if list is empty => list.isEmpty()
//Insert at head => list.insertAtHead(value)
//Delete at head => list.deleteAtHead()
//Insert at tail => list.insertAtTail(value)
//Search for element => list.search(value)
//Delete by value => list.deleteVal(value)
//Node class { data  Node nextElement}

reverse(list) => {
  let previousNode = null
  let currentNode = list.getHead() // The current node
  let nextNode = null // The next node in the list

//Reversal
  while (currentNode != null) {
    nextNode = currentNode.nextElement //stores the current node's nextElement in next
    currentNode.nextElement = previousNode // Set current node's nextElement to previous
    previousNode = currentNode // Make the current node the new previous for the next iteration
    currentNode = nextNode // Use next to go to the next node
  }

//Set the last element as the new head node
  list.setHead(previousNode)

}

let list = new LinkedList()
list.insertAtHead(4)
list.insertAtHead(9)
list.insertAtHead(6)
list.insertAtHead(1)
list.insertAtHead(0)
list.printList()
reverse(list)
list.printList()

In the above program, first, we iterate through the loop and keep adding elements into the linked list and make it reverse. As you can see the loop is running only once, so the program completes in O(n).

Tree

1. Find the minimum value from a Binary Search Tree (BST)

Input: a root node for a binary search tree

bst = {
    6 -> 4, 9 //parent -> leftChild, rightChild
    4 -> 2, 5
    9 -> 8, 12
    12 -> 10, 14
}

Output: 2

class Node {
    constructor(value) {
        this.val = value
        this.leftChild = null
        this.rightChild = null
    }
}

class BinarySearchTree {
    constructor(rootValue) {
        this.root = new Node(rootValue)
    }

insert(currentNode, newValue) {
        if (currentNode === null) {
            currentNode = new Node(newValue)
        } else if (newValue < currentNode.val) {
            currentNode.leftChild = this.insert(currentNode.leftChild, newValue)
        } else {
            currentNode.rightChild = this.insert(currentNode.rightChild, newValue)
        }
        return currentNode
    }

insertBST(newValue) {
        if(this.root==null){
            this.root=new Node(newValue)
            return
        }
        this.insert(this.root, newValue)
    }

preOrderPrint(currentNode) {
        if (currentNode !== null) {
            console.log(currentNode.val)
            this.preOrderPrint(currentNode.leftChild)
            this.preOrderPrint(currentNode.rightChild)
        }

}

inOrderPrint(currentNode) {
        if (currentNode !== null) {
            this.inOrderPrint(currentNode.leftChild)
            console.log(currentNode.val)
            this.inOrderPrint(currentNode.rightChild)
        }

}
    postOrderPrint(currentNode) {
        if (currentNode !== null) {
            this.postOrderPrint(currentNode.leftChild)
            this.postOrderPrint(currentNode.rightChild)
            console.log(currentNode.val)
        }

}
    search(currentNode, value) {

if (currentNode !== null) {
            if (value == currentNode.val) {

return currentNode
            } else if (value < currentNode.val) {
                return this.search(currentNode.leftChild, value)
            } else {
                return this.search(currentNode.rightChild, value)
            }
        } else {
            return null
        }

}

searchBST(value) {
        return this.search(this.root, value)
    }
    delete(currentNode, value) {
        if (currentNode == null) {
            return false
        }

let parentNode
        while (currentNode && (currentNode.val != value)) {
            parentNode = currentNode
            if (value < currentNode.val) {
                currentNode = currentNode.leftChild
            } else {
                currentNode = currentNode.rightChild
            }
        }

if (currentNode === null) {
            return false
        } else if (currentNode.leftChild == null && currentNode.rightChild == null) {
            if(currentNode.val==this.root.val){
                this.root=null
                return true
            }
            else if (currentNode.val < parentNode.val) {
                parentNode.leftChild = null
                return true
            } else {
                parentNode.rightChild = null
                return true
            }
        } else if (currentNode.rightChild == null) {
            if(currentNode.val==this.root.val){
                this.root=currentNode.leftChild
                return true
            }
            else if (currentNode.leftChild.val < parentNode.val) {
                parentNode.leftChild = currentNode.leftChild
                return true
            } else {
                parentNode.rightChild = currentNode.leftChild
                return true
            }

} else if (currentNode.leftChild == null) {
            if(currentNode.val==this.root.val){
                this.root = currentNode.rightChild
                return true
            }
            else if (currentNode.rightChild.val < parentNode.val) {
                parentNode.leftChild = currentNode.rightChild
                return true
            } else {
                parentNode.rightChild = currentNode.rightChild
                return true
            }
        } else {
            let minRight = currentNode.rightChild
            while (minRight.leftChild !== null) {
                minRight = minRight.leftChild
            }
            let temp=minRight.val
            this.delete(this.root, minRight.val)
            currentNode.val = temp
            return true
        }
    }

}

findMin(rootNode) => {
  if(rootNode == null)
    return null
  else if(rootNode.leftChild == null)
      return rootNode.val
  else
    return findMin(rootNode.leftChild)
}

let BST = new BinarySearchTree(6)
BST.insertBST(20)
BST.insertBST(-1)

console.log(findMin(BST.root))

This program begins by checking if the root of BST is null or not. If not null then moves to the left side of a tree and continue checking until you can react at the end. So, then you'll get the smallest number.

Graph

1. Remove Edge

Implement the program to take a graph data that includes source and destination. It should also detect if there's an edge between them or not.

Input: A graph, a source, and a destination

image

Output: A graph with the edge between the source and the destination removed.

removeEdge(graph, 2, 3)

image

class Node {
  constructor(data) {
    this.data = data
    this.nextElement = null
  }
}

class LinkedList {
  constructor() {
    this.head = null;
  }

  //Insertion At Head
  insertAtHead(newData) {
    let tempNode = new Node(newData);
    tempNode.nextElement = this.head;
    this.head = tempNode;
    return this; //returning the updated list
  }

  isEmpty() {
    return (this.head == null);
  }

//function to print the linked list
  printList() {
    if (this.isEmpty()) {
      console.log("Empty List");
      return false;
    } else {
      let temp = this.head;
      while (temp != null) {
        process.stdout.write(String(temp.data));
        process.stdout.write(" -> ");
        temp = temp.nextElement;
      }
      console.log("null");
      return true;
    }
  }

getHead() {
    return this.head;
  }
  setHead(newHead) {
    this.head = newHead;
    return this;
  }
  getListStr() {
    if (this.isEmpty()) {
      console.log("Empty List");
      return "null";
    } else {
      let st = "";
      let temp = this.head
      while (temp != null) {
        st += String(temp.data);
        st += " -> ";
        temp = temp.nextElement;
      }
      st += "null";
      return st;
    }
  }
  insertAtTail(newData) {
    //Creating a new Node with data as newData
    let node = new Node(newData);

    //check for case when list is empty
    if (this.isEmpty()) {
      //Needs to Insert the new node at Head
      this.head = node;
      return this;
    }

    //Start from head
    let currentNode = this.head;

    //Iterate to the last element
    while (currentNode.nextElement != null) {
      currentNode = currentNode.nextElement;
    }

    //Make new node the nextElement of last node of list
    currentNode.nextElement = node;
    return this;
  }
  search(value) {
    //Start from the first element
    let currentNode = this.head;

    //Traverse the list until you find the value or reach the end
    while (currentNode != null) {
      if (currentNode.data == value) {
        return true; //value found
      }
      currentNode = currentNode.nextElement
    }
    return false; //value not found
  }
  deleteAtHead() {
    //if list is empty, do nothing
    if (this.isEmpty()) {
      return this;
    }
    //Get the head and first element of the list
    let firstElement = this.head;

    //If list is not empty, link head to the nextElement of firstElement
    this.head = firstElement.nextElement;

    return this;
  }
  deleteVal(value) {
    let deleted = null; //True or False
    //Write code here

    //if list is empty return false
    if (this.isEmpty()) {
      return false;
    }

    //else get pointer to head
    let currentNode = this.head;
    // if first node's is the node to be deleted, delete it and      return true
    if (currentNode.data == value) {
      this.head = currentNode.nextElement;
      return true;
    }

    // else traverse the list
    while (currentNode.nextElement != null) {
      // if a node whose next node has the value as data, is found, delete it from the list and return true
      if (currentNode.nextElement.data == value) {
        currentNode.nextElement =       currentNode.nextElement.nextElement;
        return true;
      }
      currentNode = currentNode.nextElement;
    }
    //else node was not found, return false
    deleted = false;
    return deleted;
  }
  deleteAtTail() {
    // check for the case when linked list is empty
    if (this.isEmpty()) {
      return this;
    }
    //if linked list is not empty, get the pointer to first node
    let firstNode = this.head;
    //check for the corner case when linked list has only one element
    if (firstNode.nextElement == null) {
      this.deleteAtHead();
      return this;
    }
    //otherwise traverse to reach second last node
    while (firstNode.nextElement.nextElement != null) {
      firstNode = firstNode.nextElement;
    }
    //since you have reached second last node, just update its   nextElement pointer to point at null, skipping the last node
    firstNode.nextElement = null;
    return this;
  }
}

class Graph {
  constructor(vertices) {

    this.vertices = vertices

    this.list = []

    let it
    for (it = 0; it < vertices; it++) {
      let temp = new LinkedList()
      this.list.push(temp)
    }
  }

  addEdge(source, destination) {
    if (source < this.vertices && destination < this.vertices)

    this.list[source].insertAtHead(destination)

    return this
  }

  printGraph() {
    console.log(">>Adjacency List of Directed Graph<<")
    let i
    for (i = 0; i < this.list.length; i++) {
      process.stdout.write("|" + String(i) + "| => ")
      let temp = this.list[i].getHead()
      while (temp != null) {
        process.stdout.write("[" + String(temp.data) + "] -> ")
        temp = temp.nextElement
      }
      console.log("null ")
    }
  }

  strGraph() {
    let str = ""
    let i
    for (i = 0; i < this.list.length; i++) {
      str = str + "|" + String(i) + "| => "
      let temp = this.list[i].getHead()
      while (temp != null) {
        str += ("[" + String(temp.data) + "] -> ")
        temp = temp.nextElement
      }
      str += "null "
    }
    return str
  }
}

removeEdge(graph, source, dest) => {
  if(graph.list.length == 0){
    return graph
  }

  if(source >= graph.list.length || source < 0){
    return graph
  }

  if(dest >= graph.list.length || dest < 0){
    return graph
  }

  graph.list[source].deleteVal(dest)
  return graph
}

let g = new Graph(5)
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 3)
g.addEdge(2, 4)
g.addEdge(4, 0)
console.log("Before removing edge")
g.printGraph()

removeEdge(g, 1, 3)

console.log("\nAfter removing edge")
g.printGraph()

In this solution we use indexing and deletion. Hope you checked the solution. Since we store graph vertices in an array we can access the source linked list. then you just need to call delete function for linked lists to remove the edges. The time complexity of this program is O(E), here E denotes traversed edges.

Hash Table

1. Convert Max-Heap to Min-Heap

You need to write a program that will convert a binary max-heap into a binary min-heap.

Input: a Max-Heap [9,4,7,1,-2,6,5]

Output: [-2,1,5,9,4,6,7]

minHeapify(heap, index) => {
    let left = index * 2
    let right = (index * 2) + 1
    let smallest = index

    if ((heap.length > left) && (heap[smallest] > heap[left])) {
        smallest = left
    }
    if ((heap.length > right) && (heap[smallest] > heap[right]))
        smallest = right
    if (smallest != index) {
        let tmp = heap[smallest]
        heap[smallest] = heap[index]
        heap[index] = tmp
        minHeapify(heap, smallest)
    }
    return heap
}

convertMax(maxHeap) => {
    for (let i = Math.floor((maxHeap.length) / 2); i > -1; i--)
        maxHeap = minHeapify(maxHeap, i)
    return maxHeap
}

let maxHeap = [9,4,7,1,-2,6,5]
console.log(convertMax(maxHeap))

Here we consider maxHeap as an array and we did array hash operations on it. You can see this in the above program. So, the time complexity of this program is O(nlog(n))O(nlog(n)).

That's it!

You can find some program a bit difficult at the beginning but once you know the logic you can write easily. Thank you for reading.

If you love this article, you can buy me a coffee: https://www.buymeacoffee.com/harry1408

http://imharshpatel.com

Enjoyed this article?

Share it with your network to help others discover it

Continue Learning

Discover more articles on similar topics